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What is an Isometry?

An isometry is a transformation of the plane (or space) such that distance
is preserved.

But what is “distance”?
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Metric Spaces

Definition

A metric space is a set equipped with a distance function such that for any
three points X , Y , and Z in the set:

d(X ,X ) = 0;

d(X ,Y ) ≥ 0;

d(X ,Y ) = d(Y ,X );

d(X ,Y ) + d(Y ,Z ) ≥ d(X ,Z ).
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Taxicab Geometry

Taxicab geometry is the plane equipped with an unusual distance function:

dT = |x2 − x1|+ |y2 − y1|.

Compare this to our usual Euclidean distance:

dE =
√

(x2 − x1)2 + (y2 − y1)2.
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Features of Taxicab Geometry

In Taxicab Geometry, circles are shaped like diamonds:
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Features of Taxicab Geometry

Other shapes are similarly weirdly shaped:
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Isometries in Taxicab Geometry

Our Problem

What isometries exist in taxicab geometry, and how can we completely
classify them?

Example

A translation is always an isometry in taxicab geometry.

Translations help us by letting us simplify our problem to to classifying the
isometries fixing the origin.
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Translations

Lemma

Any taxicab isometry is the composition of a taxicab isometry fixing the
origin and a translation.

Lillian MacArthur Classifying Isometries in Taxicab Geometry 8 / 12



Translations

Lemma

Any taxicab isometry is the composition of a taxicab isometry fixing the
origin and a translation.

Lillian MacArthur Classifying Isometries in Taxicab Geometry 8 / 12



Translations

Lemma

Any taxicab isometry is the composition of a taxicab isometry fixing the
origin and a translation.

Lillian MacArthur Classifying Isometries in Taxicab Geometry 8 / 12



Translations

Lemma

Any taxicab isometry is the composition of a taxicab isometry fixing the
origin and a translation.

Lillian MacArthur Classifying Isometries in Taxicab Geometry 8 / 12



Translations

Lemma

Any taxicab isometry is the composition of a taxicab isometry fixing the
origin and a translation.

Lillian MacArthur Classifying Isometries in Taxicab Geometry 8 / 12



Isometries in Taxicab Geometry

Our lemma implies that it suffices to classify isometries fixing the origin.

Recall the shape of the unit circle:
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If the origin is fixed, the unit circle must be mapped back to itself.
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Isometries in Taxicab Geometry

Theorem

A taxicab isometry fixing the origin must permute the four corners of the
unit circle: (1, 0), (0, 1), (−1, 0), (0,−1).
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Every Isometry in Taxicab Geometry

With the knowledge that the corners must be mapped back onto
themselves, we have a full list of isometries:

The identity (doing nothing).

A reflection across the x-axis.

A reflection across the y-axis.

A reflection across the line y = x .

A reflection across the line y = −x .

A rotation of π
2 radians (90 degrees).

A rotation of π radians (180 degrees).

A rotation of 3π
2 radians (270 degrees).

All of which can be done alone or composed with a translation.
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Any questions?
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